News

  • 0
  • 0

Pretty as a peacock: The gemstone for the next generation of smart sensors

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



An international team of scientists, led by the Universities of Surrey and Sussex, has developed colour-changing, flexible photonic crystals that could be used to develop sensors that warn when an earthquake might strike next.

The wearable, robust and low-cost sensors can respond sensitively to light, temperature, strain or other physical and chemical stimuli making them an extremely promising option for cost-effective smart visual sensing applications in a range of sectors including healthcare and food safety.

In a study published by the journal Advanced Functional Materials, researchers outline a method to produce photonic crystals containing a minuscule amount of graphene resulting in a wide range of desirable qualities with outputs directly observable by the naked eye.

Intensely green under natural light, the extremely versatile sensors change colour to blue when stretched or turn transparent after being heated.

Dr. Izabela Jurewicz, Lecturer in Soft Matter Physics at the University of Surrey's Faculty of Engineering and Physical Sciences, said "This work provides the first experimental demonstration of mechanically robust yet soft, free-standing and flexible, polymer-based opals containing solution-exfoliated pristine graphene. While these crystals are beautiful to look at, we're also very excited about the huge impact they could make to people's lives."

Alan Dalton, Professor Of Experimental Physics at the University of Sussex's School of Mathematical and Physical Sciences, said: ""Our research here has taken inspiration from the amazing biomimicry abilities in butterfly wings, peacock feathers and beetle shells where the colour comes from structure and not from pigments. Whereas nature has developed these materials over millions of years we are slowly catching up in a much shorter period."

Among their many potential applications are:

  • Time-temperature indicators (TTI) for intelligent packaging -- The sensors are able to give a visual indication if perishables, such as food or pharmaceuticals, have experienced undesirable time-temperature histories. The crystals are extremely sensitive to even a small rise in temperature between 20 and 100 degrees C.
  • Finger print analysis -- Their pressure-responsive shape-memory characteristics are attractive for biometric and anti-counterfeiting applications. Pressing the crystals with a bare finger can reveal fingerprints with high precision showing well-defined ridges from the skin.
  • Bio-sensing -- The photonic crystals can be used as tissue scaffolds for understanding human biology and disease. If functionalised with biomolecules could act as highly sensitive point-of-care testing devices for respiratory viruses offering inexpensive, reliable, user-friendly biosensing systems.
  • Bio/health monitoring -- The sensors mechanochromic response allows for their application as body sensors which could help improve technique in sports players.
  • Healthcare safety -- Scientists suggest the sensors could be used in a wrist band which changes colour to indicate to patients if their healthcare practitioner has washed their hands before entering an examination room.

The research draws on the Materials Physics Group's (University of Sussex) expertise in the liquid processing of two-dimensional nanomaterials, Soft Matter Group's (University of Surrey) experience in polymer colloids and combines it with expertise at the Advanced Technology Institute in optical modelling of complex materials. Both universities are working with the Sussex-based company Advanced Materials Development (AMD) Ltd to commercialise the technology.

Joseph Keddie, Professor of Soft Matter Physics at the University of Surrey, said: "Polymer particles are used to manufacture everyday objects such as inks and paints. In this research, we were able finely distribute graphene at distances comparable to the wavelengths of visible light and showed how adding tiny amounts of the two-dimensional wonder-material leads to emerging new capabilities."

John Lee, CEO of Advanced Materials Development (AMD) Ltd, said: "Given the versatility of these crystals, this method represents a simple, inexpensive and scalable approach to produce multi-functional graphene infused synthetic opals and opens up exciting applications for novel nanomaterial-based photonics. We are very excited to be able to bring it to market in near future."


TRUNNANO (aka. Luoyang Tongrun Nano Technology Co. Ltd.) is a trusted global chemical material supplier & manufacturer with over 12 years' experience in providing super high-quality chemicals and Nanomaterials. The boron powder produced by our company has high purity, fine particle size and impurity content. Please contact us if necessary.

Inquiry us

SCR Thyristor: Principles, Characteristics and Maintenance of Semiconductor Switches

High Purity Chromium Chip Chromium Sheet Chromium Flake CAS 7440-47-3,99.95%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

Our Latest Products

SCR Thyristor: Principles, Characteristics and Maintenance of Semiconductor Switches

A brief introduction to thyristorsA thyristor is a powerful electronic device. It is a three-terminal component composed of four layers of PNPN semiconductor materials. Its forward working voltage is equal to the reverse breakdown voltage. This is re…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal…

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, high radiation absorption, and high electrical and thermal conductivity. It is used widely in the aerospace and military industries. About Metal Alloy 18.5…