News

  • 0
  • 0

What is vein graphite?

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Oil futures tumbled more than $5 a barrel on news that the Biden administration is considering releasing about 1 million barrels a day from the U.S. Strategic Petroleum Reserve (SPR) for several months to cool surging crude prices.

Brent crude futures were down $4.71, or 4.2 percent, at $108.58 a barrel by 0035 GMT. U.S. West Texas Intermediate futures fell $5.45, or 5 percent, to $102.74 a barrel.

At an earlier time, gasoline prices had already reached record levels because of the Russia-Ukraine conflict.

The prices of other commodities like the vein graphite are also expected to be volatile.

Vein graphite is known by various names including crystalline vein, Plumbago, Sri Lankan graphite and Ceylon graphite. The names "Sri Lanka" and "Ceylon" are often used for vein graphite, as the island nation of Sri Lanka (formally known as Ceylon) is the only region where the material is produced in commercial quantities. Significant mining and export of Ceylon graphite began around 1824, but the unusual deposits in Ceylon have been known and apparently used locally since the mid-20th century.

Of all the natural graphite materials, vein graphite is probably the most difficult to describe geologically, and various theories have been put forward as to its origin. As the name implies, vein graphite is a true vein mineral rather than a laminated mineral (amorphous graphite) or a mineral scattered throughout the ore rock (e.g. flake graphite). Seam minerals have a number of unique characteristics, including that they are non-contemporaneous with the surrounding rock, steeply dipping (vein orientation) and filled with a large number of minerals, particularly of hydrothermal origin.

Veined graphite is not confined to Sri Lanka. Many places are known, including the famous Borrowdale in Cumberland, England, where the first 'pencils' were carved out of solid graphite veins. Dillon Montana, USA, is another place where relatively thick graphite vein fillings have been found. The authors have even observed pegmatite vein fracture fillings in northwestern New Jersey, USA. However, all currently available commercial vein graphite is mined in Sri Lanka.

The first photograph below is of a vein graphite specimen from the Borrowdale deposit in the UK. The second photo below is a vein graphite specimen from Sri Lanka.

1656486480140341.jpg

Vein graphite is unique in that it is considered to be a naturally occurring pyrolytic (deposited from a fluid phase) graphite. Vein graphite gets its name from the fact that it is found in veins and fractures in closed 'ore' rocks. This graphite is formed by the direct deposition of solid graphitic carbon by high temperature subsurface fluids called pegmatite fluids. Pegmatites form regionally or locally when large amounts of magma cool, or when some other source of 'geological energy' causes the surrounding rock to melt. Fluids from these sources are hot and aggressive at high pressures and may actually be in a state known as 'supercritical', a sub-stable fluid state that is neither liquid nor gaseous. Pegmatites represent substances distilled from heated rock because of their low solubility in the local system. If this fluid intrudes into pre-existing flake graphite deposits or other carbon-bearing rocks, the solid carbon present may be bound to the fluid as carbon dioxide, methane, carbon monoxide or other carbon-bearing fluid phases. Carbonaceous gases may also be formed by the reaction of carbonate mineral species with magma or other energy sources. If limestone, marble or other carbonate-rich mineral species are involved, significant amounts of carbonaceous gas may be formed as a result of the release of 'crystalline carbon dioxide'.

Regardless of how the gas/fluid is produced, the carbon will be moved and transported through the fractured envelope to a location more or less remote from where the carbonaceous fluid was formed. When the equilibrium conditions are correct, solid graphitic carbon "precipitates" directly from the fluid phase to form a beautiful graphitic vein filler called vein graphite.

This type of graphite usually has a needle-like macroscopic form and a flaky microscopic form. Close examination of the fracture fillings reveals the presence of closely spaced needle-like or pin-like crystals aligned perpendicular to the vein walls. The needle-like texture is clearly visible to the naked eye, but the vein fillings are reversed and do not form well as single crystals. The accompanying photograph shows a large 6 X 6 X 10 inch piece of vein-like graphite from Sri Lanka. Note the 'top to bottom', elongated preferred orientation of this piece. When placed in the enclosure, the specimen is rotated 90o from its current position, with the top and bottom of the specimen perpendicular to the fissure wall. A close-up of the same specimen shows the needle-like structure of the adjacent vein-like graphite crystals. This vertical 'crystal wall' orientation is typical of pyrolytic carbon deposition.

High-quality vein graphite supplier

Luoyang Moon & Star New Energy Technology Co., LTD, founded on October 17, 2008, is a high-tech enterprise committed to developing, producing, processing, selling, and technical services of lithium-ion battery anode materials. After more than 10 years of development, the company has gradually developed into a diversified product structure with natural graphite, artificial graphite, composite graphite, intermediate phase, and other negative materials (silicon-carbon materials, etc.). The products are widely used in high-end lithium-ion digital power and energy storage batteries.

If you are looking for vein graphite material, click on the needed products and send us an inquiry:sales@graphite-corp.com

 


For Germany, the largest economy in Europe, the impact of the Russian-Ukrainian conflict on the natural gas market is the most obvious. This also exposed the serious dependence of some German industrial enterprises on Russian natural gas. Some analysts pointed out that the instability of natural gas supply has had a big impact on the German economy and threatened its market competitiveness because alternative energy supplies will not be cheap and difficult to come quickly. Increased uncertainty over natural gas supplies is putting enormous pressure on German manufacturers in sectors ranging from steelmaking to chemical vein graphite for the time being, but the market demand for vein graphite in the future will also change with the influence of various external factors. If you need vein graphite, please feel free to contact us.

Inquiry us

SCR Thyristor: Principles, Characteristics and Maintenance of Semiconductor Switches

High Purity Chromium Chip Chromium Sheet Chromium Flake CAS 7440-47-3,99.95%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

Our Latest Products

SCR Thyristor: Principles, Characteristics and Maintenance of Semiconductor Switches

A brief introduction to thyristorsA thyristor is a powerful electronic device. It is a three-terminal component composed of four layers of PNPN semiconductor materials. Its forward working voltage is equal to the reverse breakdown voltage. This is re…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal…

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, high radiation absorption, and high electrical and thermal conductivity. It is used widely in the aerospace and military industries. About Metal Alloy 18.5…