News

  • 0
  • 0

Scientific News Boron Nitride Graphene Mixture May Be Suitable For Next-Generation Green Cars

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Scientific community has long been fascinated by boron nitride due to its unique properties: sturdy, ultra-thin transparent, insulating and lightweight. The boron is a material that can be used by a wide range of researchers.
According to researchers at Rice University a graphene film separated by boron nanotube columns could be used as a material for storing fuel hydrogen in automobiles.

The Department of Energy is setting the standard for hydrogen fuel storage materials. A new computational study by materials scientist Rouzbeh Sharsavari of Rice Lab has determined that pillared Boron Nitride and graphene may be suitable candidates.

Shahsavari’s laboratory determined the elastic and columnar graphene structures by computer simulation, and then processed the boron nanotubes to create a mixture that simulates an unique three-dimensional structural design. (A sample of seamlessly bonded boron nanotubes to graphene is prepared.

As the pillars between the floors of a building provide space for people, so do the pillars within the graphene boron-nitride. The goal is to keep them inside and get out as necessary.

The researchers discovered that the latest simulations of molecular dynamics showed that pillared carbon nitride and graphene have a high surface area (about 2.547 square meters/square meter) as well as good recyclability in ambient conditions. Their model shows adding oxygen or lithium will improve the material's ability to combine with hydrogen.

They concentrated their simulations on the four variants of a pillared structural boron graphene, or a doped pillared boron graphene.

The best graphene at room temperature was oxygen-doped boron oxide graphene. This graphene weighs 11.6% (its weight) and 60 g/L.

The material's hydrogen weight was 14.77% in a cold temperature of -321 Fahrenheit.

The current US Department of Energy economic storage media goal is to store more hydrogen than 5.5% in weight and 40 grams of hydrogen per liter under moderate conditions. The ultimate target is 7.5% weight and 70 gram per liter.

Shahsavari explained that the hydrogen atoms adsorb on boron-nitride graphene without oxygen doping due to the weak van der Waals forces. When the material has been doped with oxygen the atoms bind tightly to the mixture. This produces a surface which is better for hydrogen.

"Oxygen and hydrogen are known to have a strong chemical affinity." "Oxygen, and hydrogen have been known to share a strong chemical affinity."

Shahsavari explained that the polarization characteristics of boron Nitride combined with graphene, and the electron mobilities of graphene themselves make the material highly adaptable in application.

Shahsavari explains that "we are looking for the best point" which is the perfect balance of surface area, weight and operating temperature as well as pressure. "This is only possible through computational modeling as we can test a lot of changes very quickly. In just a couple of days, the experimenter is able to finish the work that would normally take months.

He said these structures are strong enough to easily surpass the requirements of Department of Energy. The hydrogen fuel tank, for example, can withstand up to 1,500 charging and discharging cycles.

Tech Co., Ltd., a professional boron manufacturer, has over 12 years' experience in the chemical product development and research field. Contact us if you need high-quality boron Nitride. Send an inquiry .

Inquiry us

High Purity Chromium Chip Chromium Sheet Chromium Flake CAS 7440-47-3,99.95%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

Our Latest Products

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal…

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, high radiation absorption, and high electrical and thermal conductivity. It is used widely in the aerospace and military industries. About Metal Alloy 18.5…

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

Antimony sulfide can be used to make matches, fireworks and colored glass. It is used in rubber manufacturing as a military and vulcanizing agent.Particle size : 100mesh Purity: 99.99% Antimony Sulfide Sb2S3: Sulfide can be bismuth or powder. Tem…